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For a convex crystal region formulae (45,46,47) are 
simplified since g(x) = O. 

APPENDIX II 

The coefficients a[ ") from (39) are" 

a (2 )_1  a(l 2 ) = 0  a(2 2) --:-} 0 - - ~  = • 

For n > 3 

1 n - 2  
aC0.) - a(x.) - n! (n-  1)! n ! (n -  1)! ' 

1 z 
a~") = ( n + l -  1)! ~= ( -  1)~-1 (n+l-k-k!  1)! 

a ( n )  _ 

n - - I  

a(n-  k) 
I - k  

(for 2 < l < n - 2 ) ;  

(2n-2)t 
n--2 ( 2 n - 2 - k ) !  (._~) ] 

X (- -  1) n-2"q- ~ ( - -  1) k-1 • 
k=l k! - . - k - l j  , 

1 
a(n n) -- _ _  

(2n-- 1)! 

,,-2 ( 2 n - k -  1)!/7(n--k)] 
x n ( -1 )" -x+  Z ( -1 )  k-1 

k=a k! "n-k j .  
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A simple numerical method of determining the absorption correction factors for spherical and cylind- 
rical specimens is described. The construction of line profiles of the diffraction peaks for both types of 
specimen illustrates the origin of errors inherent in all numerical methods of this kind. The difference 
in line profiles, particularly the line shift, for spherical and cylindrical specimens could influence the 
choice of specimen geometry for accurate lattice parameter determinations• 

1. Introduction 

Recent numerical methods of calculating absorption 
correction factors for spheres and cylinders (Weber, 
1967, 1969; Dwiggins, 1974, 1.975) have revealed sub- 
stantial discrepancies with International Tables for X-ray 
Crystallography (1959) of up to 2.5%. The largest 
errors are associated with low Bragg angles and large 
values of the product of the linear absorption coeffi- 
cient and the radius of the specimen, /zR, when the 
diffracted beam emerges from the 'skin' of the specimen 
only. It appears that these errors are due to inaccurate 
numerical integration in this region of the specimen. 
This paper describes the contribution of different 
regions of spherical and cylindrical specimens to the 
resultant line profile of the diffraction peaks in an 
attempt to establish the origin of these errors. 

Several analytical and numerical methods (Claasen, 

1930; Evans & Ekstein, 1952; Weber 1969; Dwiggins, 
1970, whilst yielding the absorption factor do not 
afford a simple determination of the line profile. 
Taylor & Sinclair (1945) introduced a strip method 
for deriving the absorption factor for a cylinder in 
which the specimen was divided into strips parallel 
to the direction of the diffracted X-ray beam. From 
this construction line profiles for cylindrical specimens 
were determined. In this paper the strip method of 
Taylor & Sinclair is applied to both spherical and 
cylindrical specimens and automatic computing meth- 
ods are used to eliminate time-consuming graphical 
integration. 

2. Calculation of the absorption correction factor 

For a non-absorbing medium the intensity of a 
diffracted X-ray beam is directly proportional to the 
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irradiated volume, V, of the specimen. If absorption 
takes place in the specimen then the intensity of the 
diffracted beam is reduced by a factor 

1 
A= --V I I I exp [-lu(p+q)]dV (2.1) 

(International Tables for X-ray Crystallography, 1959) 
where A is the transmission factor, p and q are the 
path lengths of incident and diffracted X-ray beams 
respectively,/z is the linear absorption coefficient for 
the specimen and the integral is taken over the irradi- 
ated volume of the specimen. The case for a sphere 
will be considered first. 

Fig. 1 shows the passage of an X-ray beam through 
any cross section of the sphere. The beam is Bragg 
reflected through an angle 20 by any point P at a 
distance x along a chord AB. The chord is defined by 
the angle ~' which it subtends at the centre of the 
circle, radius r. A small volume element d V at P can 
be expressed as 

dV=dSdx (2.2) 

where dS is a small area element whose plane is 
normal to the diffracted beam and dx is parallel to 
the plane normal. Thus equation (2.1) can be re- 
written as 

1 exp [-  lu(p + c -  x)]dxdS (2.3) A = ~  o 

where e=AB=2r sin ~'/2. For each area element dS 
we have to calculate the integrand, 

i 
¢ 

I =  exp [ -  p(p + c -  x)]dx. (2.4) 
0 

If p can be expressed as a function of x such that 

f(x) = exp {-lt[F(x)+c-x]} (2.5) 
we obtain 

I= l~ f(x)dx , (2.6) 

which can be evaluated by Simpson's rule. Although a 
simple explicit expression for p in terms of x,F(x), 
cannot be found the problem can be overcome by 
using the Newton-Raphson numerical method. 

If we can find the function 

g (p )=0  for all x (2.7) 

and if g'(p) can be easily evaluated numerically, then 
the real roots of g(p) can be determined in the fol- 
lowing way. Suppose P0 is an approximate value of 
one of the roots, then an improved value of the root 
is given by 

P=Po + Ap where Ap= -g(Po)/g'(Po) . (2.8) 

g(p) can be determined by solving the three simul- 
taneous equations generated by applying the cosine 

rule to triangles AIB, AIP and PIB in Fig. 1. We 
obtain 

G(x,p) =0 (2.9) 
where 

G(x,p)=2p2+2xa-2ex+2ep cos 20-4xp cos 20 

+ 2{p 2 + x 2 -  2xp cos 20} 1/2 
~ t  

x {p2 +(c_x)Z + 2p(c-x) cos 20} 1/2 cos - -  
2 "  

(2.10) 

If xi is any value of x in the range 0 < x~ < c, then 

and 
g ( p ) = O ( x , , p )  (2.11) 

g ' ( p ) = O ' ( x , , p )  . (2.12) 

Substitution of values of p, obtained from an itera- 
tive process using equation (2.8), and x into equation 
(2.4) eliminates the problem of finding an analytical 
form of F(x) and enables equation (2.4) to be evalu- 
ated by Simpson's rule. 

Ideally the spherical specimen is divided into strips 
of infinitesimal cross-sectional area parallel to the 
diffracted beam. In practice evaluation of equation 
(2.4) for all strips of cross-sectional area dS yields a 
complete solution of equation (2.3). The total contri- 
bution to A of each strip is given by 

S 
c 

A ' =  dS exp [-lt(p+e-x)]dx (2.13) 

where Vs is the volume of the strip. 
This construction of a sphere in which the strips 

form cylinders of different radii whose coincident 
axes are parallel to the plane formed by the incident 
and diffracted beams is shown in Fig. 2(a). In contrast 
Fig. 2(b) shows the construction used by other workers 
in which the axes of the cylinders are normal to the 
plane formed by the incident and diffracted beams. 
Each cylinder in Fig. 2(a) is easily defined in terms of 

A 

! I 

\ 
Fig. 1. Passage of X-ray beam through a section of radius r of 

the sphere. 
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the angle ~ which its diameter subtends at the centre 
of the sphere. The relationships between ~, the strip 
dimensions, and the geometrical quantities of Fig. 1 
are illustrated in Fig. 3. 

It is readily deduced that 

and 
c=AB=2R sin ~/2 sin/?/2 (2.14) 

cos ~ ' /2=cos  ~/2{1-s in  z c~/2 cos z/3/2} -1/z . (2.15) 

The cross-sectional area of a strip is now given by 

where 

and 

dS=dydz (2.16) 

dy=R sin c~/2. d~/2 (2.17) 

dz = R sin ~/2 sin/?/2, d/?]2. (2.18) 

Strip of cross-Hctlonel area dS. 

\ 
X-ray 
Beam 

X-ray 
Beam 

(b) 

Fig. 2. Construction of spheres (a) This paper, (b) Other 
workers. 

A 
X-ray 

Fig. 3. Diagram to illustrate the geometrical relationship 
between the circle of Fig. 1 and a spherical specimen. 

It may be recalled that by far the largest error in 
this kind of analysis occurs at high values of/zR when 
the diffracted beam emerges from the outer skin of 
the specimen only. For greater accuracy in calculating 
A it is necessary to divide the specimen so that there 
are many more strips in the skin rather than in the 
bulk of the specimen. One advantage of the method 
used in this work can be seen in the form of equations 
(2.10, (2.17) and (2.18) which show dS to be propor- 
tional to sin z ct/2 sin/?/2. Strips which form the skin 
of the specimen are identified with small angles of 
and/or /? so that these strips have smaller cross- 
sectional areas than those which occur in the bulk of 
the specimen, and so occur in greater numbers. 

Equation (2.3) now reduces to its simplest form 

A = ~ sin 2 ~/2 sin fl/2 
0 

S x exp [-II(p+c-x)]dxdfldo~. 
0 

(2.19) 

Thus, for a sphere, replacing the integrals over 
and/? by summations, we obtain 

3 2n 2n 

Asph - -  16zcR ~ sin2 c¢/2 Ace ~ sin fl/2 Aft 
0 0 

× l exp (2.20) 
dO 

For a cylinder the height of each strip, dh, is given 
by 

dh=dz=Rsin ~/2 sin fl/2 d/?/2, (2.21) 

so that equation (2.19) reduces to 

A =  dh sin ~/2 [- /z(p+c-x)]dxd~ 
0 0 

(2.22) 

and thus, 

1 2~ ic At , l -  2zcR ~o sin o~/2A~ oeXp [- /z(p  + c - x ) ] d x .  

(2.23) 

A double-precision computer program was written 
in Fortran IV for evaluating equations (2.20) and 
(2.23) with increments in x equal to c/200 and values 
of A~ and Aft ranging between rc/lO and n/50. 

3. Discussion of  results 

In practice it is more convenient to replace the trans- 
mission factor A by its reciprocal, the absorption 
factor A*. In this way Tables 1 and 2 have been pre- 
pared with A* values for spheres and cylinders cal- 
culated over the range/zR, 0.5--.  10 and 0, 0 ~ 90 °. 

Tables 1 and 2 also include the results of Bond 
(1959), Weber (1967, 1969) and Dwiggins (1974, 1975). 

A C 32A - 8* 
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It is generally accepted that the most accurate values 
published in the literature, especially for high /tR 
values, are those of Weber who, in calculating Asph, 
used intervals in ~ of re/200 in a construction similar 
to the one shown in Fig. 2(b). For Aa and A/3 intervals 
of only n/10 and n/20 respectively all newly calculated 
values of A~*ph and Ac*y~ for/zR < 2.0 are within 0.01% 
of previous workers' calculations. For As*ph values 
with 0> 15 ° the largest deviation with the results of 
Weber is still only 0.08% even for/zR values of 10. 
However, at very low values of 0 the deviations from 
Weber's results increase markedly to a value of 0-7% 
a t / z R =  10 and 0=0.  Although this result reveals the 
shortcomings of inaccurate numerical integration, a 
reduction in Ac~ to n/25 and A/3 to re/50 immediately 
reduces this discrepancy to <0.07%. A closer inspec- 
tion of the results for A¢*yl values shows even greater 
discrepancies with Weber's results. Even with Aa re- 
duced to re/20 the deviation of At*y1 at /zR= 10 and 
0 = 0  has risen to 1.7%. A reduction in Aa to n/50 is 
required to reduce the deviation to <0.07%. 

The different errors in A~*ph and Ac*y~ for the same 
interval in ct can be attributed to the different contribu- 
tion of the skins of the specimens to the overall 
intensity of the diffracted beam. The origin of these 
different errors is best illustrated by an investigation 
of the line profiles for both spheres and cylinders. 

4. A comparison of line profiles from spherical 
and cylindrical specimens 

The desire of other workers to use Ac*y 1 values to 
calculate A*ph values, so reducing the number of 
numerical integrations involved, prevented them from 
determining the line profiles. In such instances the 
geometrical construction shown in Fig. 2(b) was used, 
which contrasts with the construction of Fig. 2(a) 
used in the work described here. The line profile for 
a spherical specimen is made up by considering the 
contribution of each cylinder in the construction to 
the overall intensity. Each individual contribution 

produces a line element whose height is clearly pro- 
portional to 

SI I" sin ~/2 sin/3/2 exp [-lx(p+c-x)]dxd/3 
0 

where c~ defines the size and position of each cylinder. 
Since the cylindrical cross sections which are used to 
construct a sphere are reduced to rectangles for the 
construction of a cylinder (see Fig. 4) the profile for 
a cylinder is made up of line elements whose height 
is proportional to 

I 
C 

0 exp [ -/~(p + c - x)]dx 

and independent of the height of the cylinder. (The 
derivation of these proportionalities is given in the 
Appendix). 

Figs. 5 and 6 show the variation of basic line shapes 
with 0 for a spherical and cylindrical specimen for 
/zR values of 1.0 and 5.0. For /~R= 1.0 the profiles 
for the sphere are remarkably similar whereas the 
profiles for the cylinder change significantly at low 
values of 0. The peak becomes much narrower and 
shifted from the centre until at 0 = 0  ° it splits into 
two narrow peaks. 

This splitting of the peak at 0 = 0  ° is not evident in 
the case of the sphere for /zR--1.0. For /zR=5.0, 
however, the diffraction peak at 0 = 0  ° for the sphere 
also shows a distinct minimum. Furthermore, the peaks 
at other values of 0 are also much narrower than those 
associated with a /zR value of 1.0. Nevertheless, the 
most remarkable feature of these profiles at /zR = 5.0 
is the severe narrowing of the peak for the cylinder at 
values of 0 less than 45 °. It is now clear that the total 
intensity of the peaks below 0 values of approximately 
15 ° is produced by diffraction in the skin of the cy- 
linder. Consequently, whilst intervals of a of re/10 
are adequate to derive accurate values of A~*ph, such 
intervals lead to substantial errors in values of * A cyl • 

\ . \  > ,, .. \ ,  

Diff . . . .  t Intensities N ~ the Some Intensity 

Fig. 4. Construction of line profiles from (a) sphere, (b) cylirder. 
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5. Errors in A*ph and A~*y] values 

It will be assumed that values of A* are absolutely 
correct when intervals in a of re/50 are used. (The 
error is certainly less than 0.07% when compared to 
Weber's values a t / z R =  10.0 and 0=0.)  

If A~' is the correct value then we can define the 
error in calculated values of A* as 

[Ag-A* 
AA*= \ A~ ) x l O 0 % .  

AA* has been evaluated for both spheres and cy- 
linders under high and low absorption conditions 
using intervals in a of n/lO. 

Fig. 7 shows AA*~ph plotted as a function of 0 for 
/zR values of 1.0 and 5.0. It is clear that an interval 
in a of n/lO is sufficient to keep errors below 0.03% 
for all values of 0. This result agrees well with the 
relatively broad line profiles of Fig. 5(a) and 6(a) for 
the sphere, which show that even at low values of 0 
all regions of the sphere contribute significantly to the 
overall intensity of the peak. Fig. 8 shows AAc*y~ 
plotted as a function of 0 for/zR = 1.0 and 5-0. Again 
intervals in 0 of n/10 are sufficient to keep the errors 
below 0.01% for all 0 values at the low absorption 
value o f / zR  of 1.0. However, when /zR=5.0 large 
errors in Ac)~ are seen to occur, especially in the region 
0 < 30 °, reaching the relatively very high value of 1.7% 
at 0 = 0  °. This difference in AA*pb and AAe*y I shows the 
unsuitability of Ac*r~ values for the calculation of A~*ph, 
particularly under high absorption conditions and low 
Bragg angles. 

incident parallel beam of X-rays of uniform intensity 
was assumed. In practice these conditions rarely occur, 
the focus of an X-ray tube producing, in general, a 
slightly diverging X-ray beam of non-uniform in- 
tensity. 

An assessment of the implication of these results 
on the commonly used Nelson-Riley plot in accurate 
lattice-parameter determinations cannot be made at 
this stage because the correction function, 

cos 2 0 cos 2 0 ) 
k---O-- + sin 0 

of Nelson & Riley is based theoretically upon the 
assumption of an incident X-ray beam of non-uniform 

(a) 

o* Is* 30" 4s* 60" ?s* 90" 0 *-..~ 

(b) 

Fig. 5. Line profiles for /~R= 1.0. (a) Sphere. (b) Cylinder. 

6. Implications of results 

It has been shown that specimen absorption produces 
different line profiles for spheres and cylinders. The 
origin of the errors occurring in the calculation of 
absorption correction factors by numerical methods is 
clearly shown. However, another aspect of specimen 
absorption which concerns crystallographers is the 
shift in the diffraction peak of the point of maximum 
intensity. The displacement of the point of maximum 
intensity from the centre, AR, can be conveniently 
expressed as a fraction of the sample radius, R. Fig. 
9 shows AR/R plotted as a function of 0 for both 
spherical and cylindrical specimens. Between 60 ° and 
90 ° AR/R falls rapidly to zero for the sphere, whilst 
it has a value near 1.0 for the cylinder. This angular 
region is of particular importance in accurate lattice- 
parameter determinations and, naturally, low values 
of AR/R are preferred. 

It could be inferred from these remarkable varia- 
tions of AR/R that a spherical specimen is eminently 
more suitable for lattice-parameter determinations, 
especially under conditions of high absorption. How- 
ever, it must be remembered that in the derivation of 
the line profiles the idealized arrangement of an 

50 

2O 

(a) 

o* 15* 30* 45 ° 60  ° 75*  90 = 

(b) 
0"---~ 

Fig. 6. Line profiles for ttR=5"0. (a) Sphere. (b) Cylinder. 

• I 0 Sphere 

I o p R =  1 . 0  

AA~ _ _ _ _ . - - - - - - o - - - - . _ ~  o -  . - - - - - o ~  A pR= S "0 
0 

-.10 I i I i I i 
10 30 50 70 9 o 

0 

Fig. 7. AA* values for spherical specimens as a function of 0. 
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intensity emerging from an exponential focus. Never- 
theless, for both spherical and cylindrical specimens, 
the shift of the peak increases with/~R emphasizing 
the need to prepare specimens of small diameter where 
highly absorbing materials are being used in Debye- 
Scherrer X-ray powder photography. 

Although the consideration of an incident parallel 
beam of X-rays of uniform intensity demonstrates the 

,40 

.3o  

AA* 

Cy l inder '  

0 p R =  I ' 0  

a p R =  S " 0  

I 1 t I I 
10 30 50 70  90  

0 

Fig. 8. AA* values for cylindrical specimens as a function of 0. 
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0 2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0  0 

(b) Cylinder 

i l i l , 
| o  21o 30 40 50 6o  7'0 8 o  9o 0 

Fig. 9. The variation of line displacement with Bragg angle. 

necessity to correct measurements for absorption in 
the specimen, in practice the magnitude of the cor- 
rection remains a function of the intensity and the 
nature of the X-ray source also. The effects of non- 
uniform and non-parallel beams of X-rays on the line 
profiles of spheres and cylinders will be discussed in a 
later communication. 

This paper is published by permission of the Central 
Electricity Generating Board. 

A P P E N D I X  

Calculation of  the intensity of  line profiles 

Consider the shaded regions of a spherical and cylin- 
drical specimen as shown in Fig. 4. The intensity of 
the reflected beam emerging from the region of volume 
A V~ph of the sphere is given by 

I=  kloAA V~ph (A.1) 

where k is a physical constant, I0 is the intensity of the 
incident X-rays and A is the X-ray transmission 
factor of the region. Equation (2.19) gives the relevant 
expression for the product AA V~ph 

R e 12n AA g s p  h = ~ sin e c~/2 sin ,6/2 
0 

S x exp [-- p(p + c-- x)]dxd fldoc. 
0 

(A.2) 

If we consider the volume A Vsph to be infinitely 
narrow we can divide A Vsph by its thickness 

a da 
R sin --  - -  

2 2 
to obtain 

R G~ 12~ sin - -  ,4A V~ph= -~- sin 2- _o 2 

x oeXp [ - p ( p + c - x ) ] d x d p .  (A.3) 

Thus, for a sphere the intensity of any line element 
of the profile obeys the proportionality 

c 
sin exp [ - p ( p + c - x ) ] d x d f l .  (A.4) Iocsin ~- o o 

Equation (2.22) gives for a cylinder of height, h, 

S R ~ exp [- / t (p + c -  x)ldxd~. AA V~yl = -~- h sin ~- o 

(A.5) 

Again if the shaded region of volume A Vey I is 
assumed to be infinitely narrow (A.5) reduces to 

l 
c 

AA Vcyl = h [ - / t ( p + c -  0exp x)]dx. (A.6) 
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Hence for a cylinder the intensity of any line element 
of the profile obeys the proportionality 

S Ioc oeXp [ - ~ ( p + c - x ) ] d x .  (A.7) 
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Transmitted-Beam Absorption Pattern from a Turbostratie Structure: Pyrolytic Graphite 
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By the use of Cu K~ plane-polarized X-rays, the intensity of the beam transmitted through a plate of 
highly oriented pyrolytic graphite is measured as the plate is tilted (co) relative to the beam. The resultant 
transmitted-beam absorption pattern(TBAP), expressed as effective attenuation coefficient,/z', versus co, 
is interpreted in relation to the turbostratic structure of pyrolytic graphite. The TBAP,/z' versus co, is 
complementary to the diffraction pattern, presented as log I versus 20. Potential uses of the TBAP are 
discussed. 

Introduction 

In studies of the X-ray polarization ratio for 000l re- 
flexions from highly oriented pyrolytic graphite 
(HOPG) (Calvert, Killean & Mathieson, 1974a), the 
intensity of the transmitted X-ray beam was measured. 
From a selected range of these measurements, the 
attenuation coefficient, /z, of carbon for Cu Kcq was 
deduced (Calvert, Killean & Mathieson, 1975). The 
transmitted-beam measurements, extended to cover 
the angular range of the specimen, co=10 to 95 ° 
(co = 90 ° corresponded to the beam normal to the plane 
of the specimen), and converted to the effective 
attenuation coefficient, /t', illustrate the scattering 
process which occurs with a turbostratic specimen. 
The derived transmitted-beam absorption pattern, 
It' versus co, can be considered as complementary to the 
diffraction pattern, given as log I versus 20. 

Attention is drawn to the implications of these 
observations for the determination of accurate attenua- 
tion coefficients and accurate absolute intensities. 

* N.R.C. No. 15309. 
t On leave from School of Physical Sciences, University of 

St. Andrews, North Haugh, St. Andrews, Scotland KY16 9SS. 

Experimental 

The specimen used was a plate of HOPG (Union 
Carbide Co., grade ZYA), dimensions approximately 
1 × ½ × 2~" (2.5 × 1.25 × 0.11 cm) with a nominal crys- 
talline angular spread of ½° (Moore, 1973). The plate 
could be tilted (Mathieson, 1968) with respect to the 
incident beam of plane-polarized CuK~I X-rays 
(Calvert, Killean & Mathieson, 1974b) of circular 
cross section and having a divergence of + 7' of arc 
(aperture near effective source, 1.4 mm, aperture near 
specimen, 1.66 mm, separation 398 mm) and intensity 
16000 counts/s (c/s). The dead time of the counting 
system (2.54× 10 -6 s) was measured by the method 
of Chipman (1969); the background count rate 
was 0.15 c/s; counting times were chosen to give 
precisions ranging between 0.15 and 0.5%. The 
angular range studied was from co=95 to 10 °. This 
gave a range of count rates from 6000 c/s to 20 c/s over 
a sixfold increase of path length through the specimen; 
the mean thickness of the specimen, 0.1091 cm, was 
measured by a specially constructed Sheffield air 
gauge and also with the aid of a sensitive micrometer 
(vide Calvert, Killean & Mathieson, 1975). 

The incident X-ray beam was plane polarized in a 
vertical plane and the specimen tilt axis was also 


